Partial Pontryagin duality for actions of quantum groups on C*-algebras

Kan Kitamura

the University of Tokyo

Quantum Groups Seminar 20 December 2022

Takesaki-Takai duality

Pontryagin duality

Let G be a locally compact abelian group.

 \leftrightarrow another locally compact abelian group \widehat{G} : the Pontryagin dual of G.

Consider a C^* -algebra A with a continuous action of G.

 \leadsto $G \ltimes A$: the reduced crossed product, a C*-algebra with an action of \widehat{G} ,

 $\leadsto \widehat{G} \ltimes G \ltimes A$: with an action of $\widehat{\widehat{G}} \cong G$.

Theorem (Takesaki–Takai duality)

We have a canonical *-isomorphism preserving G-actions,

$$\widehat{G} \ltimes G \ltimes A \cong \mathcal{K}(L^2(G)) \otimes A.$$

When G is not abelian, $G \ltimes_r A$ still has an "action of \widehat{G} ". The framework of locally compact quantum groups gives an appropriate meaning to \widehat{G} .

4 L F 4 DF F 4 E F 4 E F 9 Q (6

Locally compact quantum group (LCQG)

Definition (Kustermans-Vaes)

A pair $G=(L^\infty(G),\Delta_G)$ of

- ullet a von Neumann algebra $L^\infty(G)$,
- ullet a normal unital *-homomorphism $\Delta_G \colon L^\infty(G) o L^\infty(G) \, ar{\otimes} \, L^\infty(G)$,

is a locally compact quantum group (LCQG in short here) if

- $(1) \ (\Delta_G \otimes \mathsf{id}) \Delta_G = (\mathsf{id} \otimes \Delta_G) \Delta_G, \qquad \qquad \mathsf{(Coassociativity)}$
- (2) There are faithful normal semi-finite weights ϕ, ψ that are left and right invariant, respectively. (i.e. for any normal state $\omega \in L^{\infty}(G)_*$, $\phi(\omega \otimes \mathrm{id})\Delta_G = \phi$ and $\psi(\mathrm{id} \otimes \omega)\Delta_G = \psi$.) (left/right Haar weights)

Associated with a LCQG G, we have:

- The C*-subalgebra $C_0(G) \subset L^{\infty}(G)$ of "continuous functions".
- Its Pontryagin dual $\widehat{G} = (L^{\infty}(\widehat{G}), \widehat{\Delta}_{G})$ as a LCQG.
- Its opposite $G^{\operatorname{op}} = (L^{\infty}(G), \sigma\Delta_G)$ of G as a LCQG. (Here, $\sigma \colon x \otimes y \mapsto y \otimes x$ is the flip.)

Baaj-Skandalis duality

Definition

For a LCQG G and a C*-algebra A, an injective non-degenerate *-homomorphism $\alpha \colon A \to \mathcal{M}(C_0(G) \otimes A)$ is a (continuous) G-action on A if

- $(1) \ (\Delta_{\mathcal{G}} \otimes \mathsf{id})\alpha = (\mathsf{id} \otimes \alpha)\alpha, \qquad \qquad (\mathsf{Comodule\ property})$
- (2) $\overline{\operatorname{span}}\big((C_0(G)\otimes 1)\alpha(A)\big)=C_0(G)\otimes A.$ (Podleś condition)

We often assume a condition called regularity on a LCQG G. (i.e. $\overline{\text{span}}(C_0(G)C_0(\widehat{G})) = \mathcal{K}(L^2(G))$.)

Theorem (Baaj-Skandalis)

Consider a regular LCQG G and a C*-algebra A with a G^{op} -action.

- The reduced crossed product $G^{op} \ltimes_r A$ has a \widehat{G} -action.
- We have a canonical Morita equivalence $\widehat{G} \ltimes_r G^{op} \ltimes_r A \overset{M}{\sim} A$, preserving G^{op} -actions.

Example: Zappa-Szép product

Let G, H, D be (discrete) groups such that $G^{op}, H \subset D$ are subgroups with

$$G^{\mathsf{op}} \cap H = \{e\} \quad \mathsf{and} \quad G^{\mathsf{op}} \cdot H = \mathsf{D}.$$

(Such D is called a Zappa-Szép product of G^{op} and H.)

 \rightsquigarrow We have maps $g: G \times H \rightarrow G$ and $h: G \times H \rightarrow H$ s.t. vx = g(x, y)h(x, y) for $x \in G$, $y \in H$.

$$\rightarrow$$
 The map $h(x, -): H \rightarrow H$ for $x \in G$ gives a G -action on the set H .

 \rightarrow The pair B := $(G \bar{\ltimes} \ell^{\infty}(H), \Delta_{B})$ is a LCQG, where for $x \in G$, $y \in H$,

$$\Delta_{\mathsf{B}} \colon G \,\bar{\ltimes}\, \ell^{\infty}(H) \to (G \,\bar{\ltimes}\, \ell^{\infty}(H)) \,\bar{\otimes}\, (G \,\bar{\ltimes}\, \ell^{\infty}(H)).$$

$$\ell^{\infty}(H) \ni \qquad \delta_{y} \mapsto \sum_{z \in H} \delta_{z} \otimes \delta_{z^{-1}y}$$

$$\mathcal{UL}(G) \ni u_x \mapsto \sum_{z \in H} u_{g(x,z)} \otimes (u_x \delta_z)$$

(Here $\delta_{\nu}(z) := \delta_{\nu,z}$ for Dirac delta, and u_x is the left translation of x.)

We consider a duality between actions of D and B_{\square}

Matching on locally compact quantum groups

More generally, associated to LCQGs G, H, and data m of the "commutation relation" of G^{op} and H, we have two LCQGs:

- D(m) = $(L^{\infty}(G) \bar{\otimes} L^{\infty}(H), \Delta_{D(m)})$, called the double crossed product by Baaj–Vaes. It contains G^{op} and H.
- B(m) = $(G \ltimes L^{\infty}(H), \Delta_{B(m)})$, called the bicrossed product by Vaes-Vainerman. It contains \widehat{G} , and H is a "quotient".

More precisely, m is given as a *-automorphism on $L^{\infty}(G) \bar{\otimes} L^{\infty}(H)$.

Definition (Vaes-Vainerman, Baaj-Vaes)

For LCQGs G and H, a *-automorphism $m \in \operatorname{Aut}(L^{\infty}(G) \bar{\otimes} L^{\infty}(H))$ is a matching on G and H if

$$(\Delta_G \otimes id)m = m_{23}m_{13}(\Delta_G \otimes id),$$

 $(id \otimes \Delta_H)m = m_{13}m_{12}(id \otimes \Delta_H).$

Here we used leg numbering notation, such as $m_{23} = id \otimes m$.

Example: Quantum double

For a LCQG G, let $W^G \in L^{\infty}(G) \bar{\otimes} L^{\infty}(\widehat{G})$ be its Kac–Takesaki operator.

The following LCQG is called the quantum double of G,

$$D(G) := D(Ad W^G)$$

$$= \left(L^{\infty}(G) \bar{\otimes} L^{\infty}(\widehat{G}), (id \otimes (\sigma Ad W^G) \otimes id)(\Delta_G \otimes \widehat{\Delta}_G)\right).$$

Here $\sigma: x \otimes y \mapsto y \otimes x$ is the flip.

 \leadsto The bicrossed product B(Ad W^G) is isomorphic to $\widehat{G} \times \widehat{G}^{op}$.

Example

For a semisimple compact Lie group G and 0 < q < 1, we have a compact quantum group G_q , a q-deformation of G.

 \rightarrow D(G_a) is considered as the q-deformation of the complexification of G.

Partial version of Baaj-Skandalis duality

Theorem (K.)

For a matching m on regular LCQGs G and H, we have a one-to-one correspondence up to equivariant Morita equivalences

$$(D(m)$$
-actions on C*-algebras $) \leftrightarrow (B(m)$ -actions on C*-algebras $)$,

under "continuity" on the matching m and the action $G \curvearrowright H$ (precisely, if $m|_{C_0(G)\otimes C_0(H)}\in Aut(C_0(G)\otimes C_0(H))$ and it gives a G-action on $C_0(H)$.

When H is trivial, this is same to Baaj-Skandalis duality. Also, such phenomena have been observed in many cases:

- The procedure of (LHS) \rightarrow (RHS) was given by Baaj-Vaes in von Neumann algebraic case.
- For compact quantum groups G_1 , G_2 , weak Morita equivalence of $Rep(G_1)$ and $Rep(G_2)$ was investigated by Neshveyev–Yamashita.
- When D(m) = D(H) and H is a compact group, this is due to Voigt.

8 / 13

Quantum group equivariant KK-theory

- Associated to a pair of separable C*-algebras A and B, there is an abelian group KK(A,B), the "bivariant version" of K-groups of C*-algebras. (Kasparov)
 - We have $KK(\mathbb{C}, B) = K_0(B)$.
 - We have an associative product $KK(A, B) \times KK(B, D) \rightarrow KK(A, D)$.
- When A, B have actions of a quantum group G, there is an equivariant version $KK^G(A, B)$ of KK-groups. (Baaj–Skandalis)

From now, we assume separability of $C_0(G)$ and regularity for a LCQG G.

The G-equivariant KK-theory gives rise to a category KK^G of

- Objects: separable C*-algebras with G-actions.
- Morphisms: elements of $KK^G(A, B)$ for separable C*-algebras A, B with G-actions.
- \leadsto The previous duality gives a categorical equivalence $\mathsf{KK}^{\mathsf{D}(m)} \simeq \mathsf{KK}^{\mathsf{B}(m)}.$

Quantum analog of the Baum-Connes conjecture

For $\mathcal{S} \subset \mathsf{KK}^G$, we put $\langle \mathcal{S} \rangle \subset \mathsf{KK}^G$ for the localizing subcategory generated by \mathcal{S} . (Closed under countable direct sums and mapping cones.)

Proposition

For a compact quantum group G, the following are equivalent.

- (1) $KK^{G \times G^{op}} = \langle A | A \in KK \rangle$.
- (2) $KK^{D(G)} = \langle Ind_G^{D(G)} A | A \in KK^G \rangle$. (Here, $Ind_G^{D(G)} A$ means the induced D(G)-action.)
 - When \widehat{G} is torsion-free, (1) [resp. (2)] is a (candidate of) quantum analog of the property of " $\gamma=1$ " for $\widehat{G}\times\widehat{G}^{\mathrm{op}}$ [resp. D(G)] via the reformulation of the Baum–Connes conjecture by Meyer–Nest.
 - \bullet The property of $\gamma=1$ holds for amenable (or a-T-menable) groups. (Higson–Kasparov)
 - For a semisimple compact Lie group G of rank ≥ 2 and 0 < q < 1, D(G_q) has property (T) (whereas $\widehat{G}_q \times \widehat{G}_q^{\text{op}}$ is amenable). (Arano)

K-theory of (quantum) homogeneous spaces

We consider D(G)-equivariant KK-theory of quantum homogeneous spaces.

We write $\overset{KK^G}{\sim}$ for an isomorphism in the category KK^G .

Theorem (A. Wasserman, Rosenberg-Schochet)

Let G be a connected compact Lie group with torsion-free $\pi_1(G)$ and $T \leq G$ be a maximal torus. Then $C(G/T) \overset{\kappa K^G}{\sim} \mathbb{C}^{\oplus n}$ for some $n \in \mathbb{Z}_{>0}$.

Theorem (Voigt)

For
$$q \in (-1,1) \setminus \{0\}$$
, it holds $C(SU_q(2)/T) \overset{KK^{\mathbb{D}(SU_q(2))}}{\sim} \mathbb{C}^{\oplus 2}$.

~~

- ullet \widehat{G} satisfies analog of the Baum–Connes conjecture. (Meyer–Nest)
- $\widehat{SU_q(2)}$ satisfies analog of the Baum–Connes conjecture. (Voigt)

Graded twisting in the sense of Bichon–Neshveyev–Yamashita

We give a similar computation for a quantum homogeneous space of a graded twisting of compact Lie groups. Let

- G be a connected, simply connected compact Lie group,
- $0 < q \le 1$, and
- $\tau \in \mathcal{Z}(G)^r$, where r is the rank of G.

Then Neshveyev–Yamashita constructed a graded twisting G_q^{τ} of G_q as a new compact quantum group.

Theorem (Neshveyev-Yamashita)

C*-tensor categories of the form $\operatorname{Rep}(SU_q(n)^{\tau})$ exhausts all rigid C*-tensor categories with the fusion rule of $\operatorname{Rep}(SU(n))$, which were classified by Kazhdan–Wenzl, Jordans.

Applications to quantum homogeneous spaces

We can compare $KK^{D(G_q)}$ and $KK^{D(G_q^{\tau})}$ to some extent. When q=1, we get the following.

Theorem (K.)

Let G be a connected, simply connected compact Lie group, $T \leq G$ be a maximal torus, and $\tau \in \mathcal{Z}(G)^r$. Then $C(G^{\tau}/T) \overset{KK^{D(G^{\tau})}}{\sim} \mathbb{C}^{\oplus n}$ for some n.

Strategy

With the aid of $\mathsf{KK}^{\mathsf{D}(G^\tau)} \simeq \mathsf{KK}^{G^\tau \times G^{\tau \, \mathsf{op}}}$, we reduce the followings to the known case of $G \rtimes (T/\mathcal{Z}(G))$ for $\mathsf{Ad} \colon T/\mathcal{Z}(G) \to \mathsf{Aut}(G)$.

- (1) We show $KK^{D(G^{\tau})} = \langle Ind_{G^{\tau}}^{D(G^{\tau})} A | A \in KK^{G^{\tau}} \rangle$.
- (2) Construct $\mathbf{x} \in \mathsf{KK}^{\mathsf{D}(G^\tau)}(C(G^\tau/T), \mathbb{C}^{\oplus n})$ and show \mathbf{x} is a KK^{G^τ} -equivalence. By (1), \mathbf{x} is also a $\mathsf{KK}^{\mathsf{D}(G^\tau)}$ -equivalence.

Thank you very much for listening!

4□▶ 4□▶ 4 □ ▶ 4 □ ▶ 4 □ ▶ 9 9 0 0